Fixation of Femoral Neck and Pertrochanteric Hip Fractures

© Gannet Implant
LEGAL MANUFACTURER:

BAAT MEDICAL PRODUCTS
Creatieve Fabriek – Building A04
F. Hazemeijerstraat 800
7555 RJ Hengelo - NL
Phone: +31 88 5656600
info@baatmedical.com
www.baatmedical.com

DISTRIBUTOR:

GANNET IMPLANT
Praediniussingel 41
9711 AE Groningen
The Netherlands
Phone: +31 85 401 26 45
info@gannetimplant.com
www.gannetimplant.com
TABLE OF CONTENTS

INTRODUCTION .. 4
 - Features and benefits ... 4

INDICATIONS AND CONTRAINDICATIONS 4
 - Indications: .. 4
 - Relative contraindications: 4

SURGICAL TECHNIQUE .. 5
 - Procedure overview ... 5
 - 1. Fracture reduction .. 5
 - 2. Approach ... 6
 - 3. Guide Pin insertion ... 6
 - 4. Length determination ... 6
 - 5. Drilling ... 7
 - 6. Gannet Blade and Plate assembly 8
 - 7. Setting the Gannet Introducer 8
 - 8. Gannet Introducer and Blade and Plate assembly ... 8
 - 9. Gannet Blade and Plate one-step insertion 8
 - 10. Plate impaction .. 9
 - 11. Plate fixation .. 9
 - 12. Gannet Impaction Anchor deployment 10
 - 13. Final check and wound closure 10

GANNET IMPLANT REMOVAL 11
 - Procedure overview ... 11
 - 1. Approach ... 11
 - 2. Retraction of Impaction Anchors 11
 - 3. Removal of Gannet Self-Tapping Cortical Screws ... 11
 - 4. Extraction of Gannet Blade and plate 11
 - 5. Final check and wound closure 11

REFERENCES .. 12

ORDERING INFORMATION 12

GENERAL INFORMATION 13
 - Description ... 13
 - General conditions of use 13
 - Magnetic Resonance Imaging 13
 - Reuse ... 13
 - Cleaning and sterilisation 14

CATALOGUE .. 15
 - Gannet Sets .. 15
 - Gannet Blade ... 15
 - Gannet Plate ... 16
 - Gannet Self-Tapping Cortical Screws 16
 - Gannet Instruments ... 17
INTRODUCTION

FEATURES AND BENEFITS

The Gannet is a surgical device specially designed for the fixation of (intracapsular) femoral neck fractures and the stable (extracapsular) pertrochanteric hip fractures. The Gannet is a dynamic, low volume device providing rotational and angular stability of the femoral head. Two side wings provide superior rotational stability while the device is locked in the femoral head by deployment of two impaction anchors. The Gannet is minimal invasive to the femoral head, because of the low implant volume. Due to its design the Gannet preserves the remaining vascularisation of the femoral head, and provides the stability necessary for the revascularisation and primary bone healing of the femoral neck fracture. The Gannet offers surgeons a straightforward and very familiar technique, and quality instrumentation to perform successful fixation of femoral neck and pertrochanteric hip fractures, whilst minimizing complications.

INDICATIONS AND CONTRAINDICATIONS

INDICATIONS:
Displaced and non-displaced femoral neck fractures. Stable adult pertrochanteric femoral fractures; classified as 31-A1 by the AO/OTA system.

RELATIVE CONTRAINDICATIONS:
• Local infection or inflammation
• Compromised bone stock
• Unstable intertrochanteric (pertrochanteric) femur fractures; classified as other than 31-A1 by the AO/OTA system
• Material sensitivity
• Morbid obesity
• Inadequate local tissue coverage
• Any mental or neuromuscular disorder, which would create an unacceptable risk of fixation failure or complications in postoperative care.
• Other medical or surgical conditions, which would preclude the potential benefit of surgery.
The DLBP consists of a standard 135° barreled side-plate combined with a low volume cannulated locking blade. The side plate provides angular stability and allows controlled dynamic axial compression of the fracture. Two side wings at the tip of the blade provide rotational stable fixation of the locking blade in the head of femur. The expandable impaction anchors lock the blade in the femoral head and prevent perforation and backing out of the implant and further augments the rotational stability.

PROCEDURE OVERVIEW

• The patient is positioned on the fracture table.
• Gentle anatomical reduction of the fracture.
• Make a ±8 cm lateral skin incision.
• Insert the Guide Pin in the centre/centre position of the femoral head to a depth of 5 mm subchondrally, using the Gannet Aiming Device and the image intensifier.
• Next, determine the length of the Gannet Blade by using the Gannet Measuring Gauge.
• After measuring it is advised to advance the guide pin in the first cortex of the acetabulum to stabilize the femoral head during insertion and also to prevent pulling out the guide pin on removal of the drill.
• Insert the Gannet Stepped Drill over the Guide Pin and drill to a depth of 5 mm subchondrally using the image intensifier.
• Assemble the Gannet Blade and Plate using the support located in the Gannet Tray.
• Set the Gannet Introducer to the desired length.
• Lock the Gannet Introducer onto the assembled Gannet Blade and Plate.
• Place the mounted Gannet Blade and Plate over the Guide Pin and insert in the pre-drilled lateral cortex by gently tapping with a hammer. After the side plate is seated along the lateral cortex, the introducer is released and the locking blade further tapped in the femoral head up to 5 mm subchondrally using the image intensifier. Remove the Guide Pin.
• The plate can be fully seated by using the Impactor placed in the most proximal cortical screw hole.
• The sideplate is fixed by two or three selftapping cortical screws.
• By turning the setscrew in the shaft of the locking blade in clockwise direction, the impaction anchors are expanded by which the blade is locked within the femoral head.
• Ensure the central positioning of the Gannet blade by antero-posterior and axial views. Close the wound.

See the description of each individual step for more information.

1. FRACTURE REDUCTION

Anatomical reduction is the single most important step in this surgical procedure. No osteosynthesis will overcome any inadequate fracture reduction.

The patient is positioned supine on the fracture table with the fractured hip extended, adducted and slightly endorotated until the patella is in a position parallel to the floor.

The contralateral leg is abducted. The fracture is then carefully reduced by gentle longitudinal traction using an image intensifier in the antero-posterior and axial planes.

An anatomical fracture is strived for. Distraction of the fracture by undue traction should be prevented at all costs.

After the fracture reduction, the anteversion angle of the femoral neck is assessed by axial imaging.
2. APPROACH
A lateral skin incision of ±8 cm is made downwards from the lower end of the greater trochanter. The subcutis and the fascia lata are split in line with the skin incision. The vastus lateralis muscle is split longitudinally at its posterior border, and reflected upwards.

3. GUIDE PIN INSERTION
To start with the Guide Pin should be pre-checked if it is absolutely straight. This can be done by rolling it on a flat surface. Also check if the Guide Pin, including the threaded tip, slides smoothly through the cannulated Gannet Stepped Drill.

The Guide Pin should be positioned in the centre/centre position of the femoral head. The 3 mm Guide Pin is to be inserted using the Gannet Aiming Device. The tip of the lesser trochanter must be at the insertion point of the Guide Pin in the antero-posterior view.

NOTE:
As the insertion of the Gannet Blade will not produce any rotational torque it is not necessary to introduce an extra ‘anti-rotational’ Guide Pin.

The self-centring Gannet Aiming Device is positioned firmly on the lateral cortex. The anteversion plane is chosen as assessed during the fracture reduction imaging.

The Guide Pin is inserted using an electric drill under image intensification. The Guide Pin should be positioned in the centre of the femoral head in the antero-posterior and axial view; if not, the Guide Pin must be re-inserted.

After the Guide Pin has been positioned in the centre of the femoral head, it is advanced until the tip is located at the planned depth in the femoral head: 5 mm subchondrally.
4. LENGTH DETERMINATION
The reaming depth, as well as the length of the Gannet Blade, is determined by placing the Gannet Measuring Gauge over the protruding part of the Guide Pin all the way down to the lateral cortex.

The measured size is the actual length of the Gannet Blade. If the measured size is in between two implant sizes, always choose the longer Gannet Blade length.

After determining the implant size, it is advised to advance the Guide Pin further into the subchondral bone of the femoral head, into the first cortex of the acetabulum. This is to prevent dislodgment of the Guide Pin during the later drilling procedure. Furthermore, this is also to prevent tilting of the femoral head during the introduction of the Gannet Blade into the femoral head.

5. DRILLING
The cannulated Gannet Stepped Drill is set to the measured depth. The Stepped Drill is inserted over the Guide Pin, then the femoral neck and head are pre-drilled to the desired depth until the conical end-stop just touches the lateral cortex of the femur. The conical end-stop will prevent from drilling too deep. It is strongly advised that at least the last part of the drilling is performed under image intensification. Remove the drill. The Guide Pin is left in place in order to insert the Gannet Blade and Plate.
6. GANNET BLADE AND PLATE ASSEMBLY
Based on the length determined, the correct sized Gannet Blade is chosen. The length of the plate is determined by the fracture type; a two-hole plate is chosen for the fixation of femoral neck fractures and a three-hole plate for the fixation of stable pertrochanteric fractures. Place the selected Gannet Blade in the Support position of the Gannet Instrument Tray. Place the Plate over the shaft of the Gannet Blade.

7. SETTING THE GANNET INTRODUCTOR
Adjust the Gannet Introducer to the selected Gannet Blade length: Rotate the Locking Ring of the Gannet Introducer and slide the shaft out to the desired length. Return the Locking Ring into its locking position.

8. GANNET INTRODUCTOR AND BLADE AND PLATE ASSEMBLY
Position the Gannet Introducer onto the selected Gannet Blade in the Support. Align the arrow on the shaft of the Gannet Introducer with the line marking on the Gannet Blade. Place the Gannet Central Rod through the handle of the Gannet Introducer into the Gannet Implant. Screw the locking rod into the Gannet Blade by turning it clockwise.

Please, do not over tighten!

The assembled Gannet Blade and Plate should now be locked on the Gannet Introducer.

9. GANNET BLADE AND PLATE ONE-STEP INSERTION
Place the Gannet Introducer and the mounted Gannet Blade and Plate over the Guide Pin. Insert the Gannet Blade and Plate in the pre-drilled lateral cortex by gently tapping with a hammer. The Plate should be positioned parallel to the axis of the femur.

Insert the Gannet Blade and Plate until the Plate is seated along the lateral cortex.
Release the handle of the Gannet Introducer and slide it fully forward. Gently tap the Gannet Blade into position until the Gannet Introducer reaches the stop. The last part of the insertion is performed under image intensification.

Now the Gannet Blade should be inserted 5 mm subchondrally. Remove the Gannet Introducer by turning the central rod counter clockwise. Remove the Guide Pin.

10. PLATE IMPACTION
If the Plate does not fully abuts the femur, the Gannet Impactor should be used. Place the black plastic tip of the Gannet Impactor in the upper cortical screwwhole of the Plate and use a hammer to tap the Plate towards the femur.

11. PLATE FIXATION
The Plate is fixed to the femur by using two or three Gannet Self-Tapping Cortical Screws. Pre-drill biocortically by the means of the 3.2 mm cortical Drill and Drill Guide. Use the Depth Gauge to determine the correct length of the Gannet Self-Tapping Cortical Screws.

As an alternative to using the Gannet Screw and Anchor Driver, the Screw Driver Insert 3.5 mm may be used in combination with an electric drill to place the Gannet Self-Tapping Cortical Screws.

Always use the Gannet Screw and Anchor Driver for the last few turns to prevent stripping of the drill hole.

NOTE: The Gannet Blade offers superior rotational stability both during implantation and under physical load. Therefore, the placement of additional ‘anti-rotational’ screws or pins is not required.
12. GANNET IMPACTION ANCHOR DEPLOYMENT
Insert the Gannet Screw and Anchor Driver in the setscrew of the Gannet Implant shaft. Deploy the Impaction Anchors by turning the internal setscrew clockwise for about 8 full turns until the end stop is reached.

Please do not over tighten!

Make sure the Impaction Anchors are fully deployed with an antero-posterior view using image intensification.

NOTE: Never use an electric drill for Impaction Anchor deployment!

13. FINAL CHECK AND WOUND CLOSURE
Ensure the central positioning of the Gannet Blade by antero-posterior and axial view. Store the representative X-ray views.

Close the fascia lata, subcutaneous fascia and skin. Leave a drain if necessary.
GANNET IMPLANT REMOVAL

PROCEDURE OVERVIEW

1. Approach – open the primary skin incision
2. Retract the two Impaction Anchors using the Gannet Screw and Anchor Driver.
3. Remove the two Gannet Self-Tapping Cortical Screws using the Gannet Screw and Anchor Driver.
4. Extract the Gannet Blade together with the mounted Plate by means of the Extractor mounted on the Blade.
5. Close the wound in three layers.

1. APPROACH
A lateral skin incision of ±8 cm is made downwards from the lower end of the greater trochanter. The subcutis and the fascia lata are split in line with the skin incision. The vastus lateralis muscle is split longitudinally at its posterior border, and reflected upwards.
Remove the tissue from the end of the Plate.

2. RETRACTION OF IMPACTION ANCHORS
Using the Gannet Screw and Anchor Driver retract the Impaction Anchors. Retraction may be checked by image intensifier to ensure that the Impaction Anchors are fully retracted.

3. REMOVAL OF GANNET SELF-TAPPING CORTICAL SCREWS
Remove the Gannet Self-Tapping Cortical Screws with the Gannet Screw and Anchor Driver. Free the Plate from overgrowing tissue/bone.

4. EXTRACTION OF GANNET BLADE AND PLATE
Place the Gannet Extractor on the Gannet Blade, facilitated by the Guide Tip of the Gannet Extractor. Screw the Gannet Extractor onto the Gannet Blade by turning it clockwise. Please, do not overtighten!
Remove the Gannet Blade and mounted Plate by using the sliding handle of the Gannet Extractor to tap the Gannet Implant out of the femoral neck.

5. FINAL CHECK AND WOUND CLOSURE
Wound closure in three layers.
REFERENCES

W.H. Roerdink, A.M.M. Aalsma, G. Nijenbanning, A.D.P. van Walsum
The Dynamic Locking Blade Plate, a new implant for intracapsular hip fractures: Biomechanical comparison with the sliding hip screw and Twin Hook
Injury, Int. J. Care Injured 40 (2009) 283-287

W.H. Roerdink, A.M.M. Aalsma, G. Nijenbanning, A.D.P. van Walsum
Initial promising results of the dynamic locking blade plate, a new implant for the fixation of intracapsular hip fractures: results of a pilot study
Arch Orthop Trauma Surg published online 21 October 2010

W.H. Roerdink
The Dynamic Locking Blade Plate; innovation in the treatment of femoral neck fractures
Thesis, University of Utrecht 17-05-2011
ISBN: 978-94-6108-152-0

ORDERING INFORMATION

Gannet Implants and Gannet Instruments can be ordered via your Gannet distributor. Please refer to the Ordering Catalogue in the back of this Surgical Technique.
GENERAL INFORMATION

DESCRIPTION
Basically, the Gannet set for femoral neck fractures consists of a 2-hole standard 135° barreled side-plate combined with a low volume cannulated locking blade and self-tapping screws. The Gannet set for intertrochanteric femur fractures consists of a 3-hole or 4-hole standard 135° barreled side-plate combined with a low volume cannulated locking blade and self-tapping screws. The sets as a whole have been CE marked. The implants are delivered non sterile. The devices must be sterilized prior to use, by a validated steam sterilization process at the hospital. See IFU for more details.

GENERAL CONDITIONS OF USE
The device is intended for use by trauma or orthopaedic surgeons working in hospitals or clinics who are trained to work with these kinds of osteosynthesis devices.

MAGNETIC RESONANCE IMAGING
A majority of patients with orthopaedic implants have been imaged with MR without incident. Displacement of these implants is highly unlikely to occur for these that are mechanically fixed to the patient’s bone structure. However, sufficient currents being introduced in the metal by the magnetic and radiofrequency fields can heat large metallic implants.

The Gannet is not MRI tested.
Always check your hospitals technician(s) to assess MRI compatibility.

REUSE
An implant should never be reused. While it may appear undamaged, a used implant may have acquired blemishes or latent compromise of its integrity, which would reduce its service life. It is recommended to verify the instruments are in good condition and operating order prior to use for surgery.
CLEANING AND STERILISATION
For cleaning and sterilisation of the instruments please see the IFU.
For further information or questions, please contact your Gannet Implant distributor.

DISTRIBUTED BY:

LEGAL MANUFACTURER:

BAAT MEDICAL PRODUCTS
Creatieve Fabriek – Building A04
F. Hazemeijerstraat 800
7555 RJ Hengelo
Phone: +31 88 5656600
info@baatmedical.com
www.baatmedical.com

The information presented in this brochure is intended to demonstrate a BAAT Medical product. Always refer to the package insert, product label and/or user instructions before using any BAAT Medical product. Surgeons must always rely on their own clinical judgment when deciding which products and techniques to use with their patients. Products may not be available in all markets. Product availability is subject to the regulatory or medical practices that govern individual markets. Please contact your Gannet Implant representative if you have questions about the availability of BAAT Medical products in your area.

Rev 11, July 2015
Copyright© 2008-2015 BAAT Medical Products / Gannet Implant.
CATALOGUE

GANNET SETS

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019.GS.085</td>
<td>GANNET Blade 85mm + 135° 2-hole Plate</td>
</tr>
<tr>
<td>2019.GS.090</td>
<td>GANNET Blade 90mm + 135° 2-hole Plate</td>
</tr>
<tr>
<td>2019.GS.095</td>
<td>GANNET Blade 95mm + 135° 2-hole Plate</td>
</tr>
<tr>
<td>2019.GS.100</td>
<td>GANNET Blade 100mm + 135° 2-hole Plate</td>
</tr>
<tr>
<td>2019.GS.105</td>
<td>GANNET Blade 105mm + 135° 2-hole Plate</td>
</tr>
<tr>
<td>2019.GS.110</td>
<td>GANNET Blade 110mm + 135° 2-hole Plate</td>
</tr>
<tr>
<td>2019.GS.115</td>
<td>GANNET Blade 115mm + 135° 2-hole Plate</td>
</tr>
<tr>
<td>2019.GS.120</td>
<td>GANNET Blade 120mm + 135° 2-hole Plate</td>
</tr>
<tr>
<td>2019.GT.085</td>
<td>GANNET Blade 85mm + 135° 3-hole Plate</td>
</tr>
<tr>
<td>2019.GT.090</td>
<td>GANNET Blade 90mm + 135° 3-hole Plate</td>
</tr>
<tr>
<td>2019.GT.095</td>
<td>GANNET Blade 95mm + 135° 3-hole Plate</td>
</tr>
<tr>
<td>2019.GT.100</td>
<td>GANNET Blade 100mm + 135° 3-hole Plate</td>
</tr>
<tr>
<td>2019.GT.105</td>
<td>GANNET Blade 105mm + 135° 3-hole Plate</td>
</tr>
<tr>
<td>2019.GT.110</td>
<td>GANNET Blade 110mm + 135° 3-hole Plate</td>
</tr>
<tr>
<td>2019.GT.115</td>
<td>GANNET Blade 115mm + 135° 3-hole Plate</td>
</tr>
<tr>
<td>2019.GT.120</td>
<td>GANNET Blade 120mm + 135° 3-hole Plate</td>
</tr>
</tbody>
</table>

GANNET BLADE

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019.GA.085</td>
<td>GANNET Blade 85mm</td>
</tr>
<tr>
<td>2019.GA.090</td>
<td>GANNET Blade 90mm</td>
</tr>
<tr>
<td>2019.GA.095</td>
<td>GANNET Blade 95mm</td>
</tr>
<tr>
<td>2019.GA.100</td>
<td>GANNET Blade 100mm</td>
</tr>
<tr>
<td>2019.GA.105</td>
<td>GANNET Blade 105mm</td>
</tr>
<tr>
<td>2019.GA.110</td>
<td>GANNET Blade 110mm</td>
</tr>
<tr>
<td>2019.GA.115</td>
<td>GANNET Blade 115mm</td>
</tr>
<tr>
<td>2019.GA.120</td>
<td>GANNET Blade 120mm</td>
</tr>
</tbody>
</table>

GANNET Blade and Plate delivered in one set

GANNET Blade
CATALOGUE

PLATE

2019.GP.135 135° 2-hole Plate
2019.TP.135 135° 3-hole Plate

GANNET SELF-TAPPING CORTICAL SCREWS

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019.SC.034</td>
<td>GANNET Self-Tapping Cortical Screw 4.5x34mm</td>
</tr>
<tr>
<td>2019.SC.036</td>
<td>GANNET Self-Tapping Cortical Screw 4.5x36mm</td>
</tr>
<tr>
<td>2019.SC.038</td>
<td>GANNET Self-Tapping Cortical Screw 4.5x38mm</td>
</tr>
<tr>
<td>2019.SC.040</td>
<td>GANNET Self-Tapping Cortical Screw 4.5x40mm</td>
</tr>
<tr>
<td>2019.SC.042</td>
<td>GANNET Self-Tapping Cortical Screw 4.5x42mm</td>
</tr>
<tr>
<td>2019.SC.044</td>
<td>GANNET Self-Tapping Cortical Screw 4.5x44mm</td>
</tr>
<tr>
<td>2019.SC.046</td>
<td>GANNET Self-Tapping Cortical Screw 4.5x46mm</td>
</tr>
<tr>
<td>2019.SC.048</td>
<td>GANNET Self-Tapping Cortical Screw 4.5x48mm</td>
</tr>
</tbody>
</table>

Plate

Two screws delivered in one set
GANNET INSTRUMENTS

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019.GI.INT</td>
<td>GANNET Introducer</td>
</tr>
<tr>
<td>2019.GI.SAD</td>
<td>GANNET Screw and Anchor Driver</td>
</tr>
<tr>
<td>2019.GI.EXT</td>
<td>GANNET Extractor</td>
</tr>
<tr>
<td>2019.GI.AID</td>
<td>GANNET Aiming Device</td>
</tr>
<tr>
<td>2019.GI.SDR</td>
<td>GANNET Stepped Drill</td>
</tr>
<tr>
<td>2019.GI.MEG</td>
<td>GANNET Measuring Gauge</td>
</tr>
<tr>
<td>2019.GI.GPI</td>
<td>Guide Pin</td>
</tr>
<tr>
<td>2019.GI.DRI</td>
<td>Drill, 3.2mm (screws)</td>
</tr>
<tr>
<td>2019.GI.DEG</td>
<td>GANNET Depth Gauge</td>
</tr>
<tr>
<td>2019.GI.DRG</td>
<td>GANNET Drill Guide (Drill, 3.2mm)</td>
</tr>
<tr>
<td>2019.GI.SDI</td>
<td>GANNET Screw Driver Insert 3.5mm</td>
</tr>
<tr>
<td>2019.GI.IMC</td>
<td>GANNET Impactor</td>
</tr>
<tr>
<td>2019.GI.IMT</td>
<td>GANNET Impactor Tip</td>
</tr>
<tr>
<td>2019.GI.TRY</td>
<td>GANNET Tray</td>
</tr>
</tbody>
</table>